Как из обычной дроби сделать десятичную

Как перевести десятичную дробь в обыкновенную

Вот, казалось бы, перевод десятичной дроби в обычную — элементарная тема, но многие ученики её не понимают! Поэтому сегодня мы подробно рассмотрим сразу несколько алгоритмов, с помощью которых вы разберётесь с любыми дробями буквально за секунду.

Напомню, что существует как минимум две формы записи одной и той же дроби: обыкновенная и десятичная. Десятичные дроби — это всевозможные конструкции вида 0,75; 1,33; и даже −7,41. А вот примеры обыкновенных дробей, которые выражают те же самые числа:

Сейчас разберёмся: как от десятичной записи перейти к обычной? И самое главное: как сделать это максимально быстро?

Основной алгоритм

На самом деле существует как минимум два алгоритма. И мы сейчас рассмотрим оба. Начнём с первого — самого простого и понятного.

Чтобы перевести десятичную дробь в обыкновенную, необходимо выполнить три шага:

    Переписать исходную дробь в виде новой дроби: в числителе останется исходная десятичная дробь, а в знаменателе нужно поставить единицу. При этом знак исходного числа также помещается в числитель. Например:

  • Умножаем числитель и знаменатель полученной дроби на 10 до тех пор, пока в числителе не исчезнет запятая. Напомню: при каждом умножении на 10 запятая сдвигается вправо на один знак. Разумеется, поскольку знаменатель тоже умножается, там вместо числа 1 будут появляться 10, 100 и т.д. Примеры: Алгоритм перехода к обычным дробям
  • Наконец, сокращаем полученную дробь по стандартной схеме: делим числитель и знаменатель на те числа, которым они кратны. Например, в первом примере 0,75=75/100, при этом и 75, и 100 делятся на 25. Поэтому получаем $0,75=\frac<75><100>=\frac<3\cdot 25><4\cdot 25>=\frac<3><4>$ — вот и весь ответ.:)
  • Важное замечание по поводу отрицательных чисел. Если в исходном примере перед десятичной дробью стоит знак «минус», то и на выходе перед обыкновенной дробью тоже должен стоять «минус». Вот ещё несколько примеров:

    Примеры перехода от десятичной записи дробей к обычной

    Особое внимание хотелось бы обратить на последний пример. Как видим, в дроби 0,0025 присутствует много нулей после запятой. Из-за этого приходится аж целых четыре раза умножать числитель и знаменатель на 10. Можно ли как-то упростить алгоритм в этом случае?

    Конечно, можно. И сейчас мы рассмотрим альтернативный алгоритм — он чуть более сложен для восприятия, но после небольшой практики работает намного быстрее стандартного.

    Более быстрый способ

    В данном алгоритме также 3 шага. Чтобы получить обычную дробь из десятичной, нужно выполнить следующее:

    Вот и всё! На первый взгляд, эта схема сложнее предыдущей. Но на самом деле он и проще, и быстрее. Судите сами:

    Как видим, в дроби 0,64 после запятой стоит две цифры — 6 и 4. Поэтому $n=2$. Если убрать запятую и нули слева (в данном случае — всего один ноль), то получим число 64. Переходим ко второму шагу: $<<10>^>=<<10>^<2>>=100$, поэтому в знаменателе стоит именно сто. Ну а затем остаётся лишь сократить числитель и знаменатель.:)

    Ещё один пример:

    Здесь всё чуть сложнее. Во-первых, цифр после запятой уже 3 штуки, т.е. $n=3$, поэтому делить придётся на $<<10>^>=<<10>^<3>>=1000$. Во-вторых, если убрать из десятичной записи запятую, то мы получим вот это: 0,004 → 0004. Вспомним, что нули слева надо убрать, поэтому по факту у нас число 4. Дальше всё просто: делим, сокращаем и получаем ответ.

    Наконец, последний пример:

    Особенность этой дроби — наличие целой части. Поэтому на выходе у нас получается неправильная дробь 47/25. Можно, конечно, попытаться разделить 47 на 25 с остатком и таким образом вновь выделить целую часть. Но зачем усложнять себе жизнь, если это можно сделать ещё на этапе преобразований? Что ж, разберёмся.

    Что делать с целой частью

    На самом деле всё очень просто: если мы хотим получить правильную дробь, то необходимо убрать из неё целую часть на время преобразований, а затем, когда получим результат, вновь дописать её справа перед дробной чертой.

    Например, рассмотрим то же самое число: 1,88. Забьём на единицу (целую часть) и посмотрим на дробь 0,88. Она легко преобразуется:

    Затем вспоминаем про «утерянную» единицу и дописываем её спереди:

    Вот и всё! Ответ получился тем же самым, что и после выделения целой части в прошлый раз. Ещё парочка примеров:

    В этом и состоит прелесть математики: каким бы путём вы не пошли, если все вычисления выполнены правильно, ответ всегда будет одним и тем же.:)

    В заключение хотел бы рассмотреть ещё один приём, который многим помогает.

    Преобразования «на слух»

    Давайте задумаемся о том, что вообще такое десятичная дробь. Точнее, как мы её читаем. Например, число 0,64 — мы читаем его как «ноль целых, 64 сотых», правильно? Ну, или просто «64 сотых». Ключевое слово здесь — «сотых», т.е. число 100.

    А что насчёт 0,004? Это же «ноль целых, 4 тысячных» или просто «четыре тысячных». Так или иначе, ключевое слово — «тысячных», т.е. 1000.

    Ну и что в этом такого? А то, что именно эти числа в итоге «всплывают» в знаменателях на втором этапе алгоритма. Т.е. 0,004 — это «четыре тысячных» или «4 разделить на 1000»:

    Попробуйте потренироваться сами — это очень просто. Главное — правильно прочесть исходную дробь. Например, 2,5 — это «2 целых, 5 десятых», поэтому

    А какое-нибудь 1,125 — это «1 целая, 125 тысячных», поэтому

    В последнем примере, конечно, кто-то возразит, мол, не всякому ученику очевидно, что 1000 делится на 125. Но здесь нужно помнить, что 1000 = 10 3 , а 10 = 2 ∙ 5, поэтому

    \[\begin& 1000=10\cdot 10\cdot 10=2\cdot 5\cdot 2\cdot 5\cdot 2\cdot 5= \\& =2\cdot 2\cdot 2\cdot 5\cdot 5\cdot 5=8\cdot 125\end\]

    Таким образом, любая степень десятки раскладывается лишь на множители 2 и 5 — именно эти множители нужно искать и в числителе, чтобы в итоге всё сократилось.

    На этом урок окончен. Переходим к более сложной обратной операции — см. «Переход от обыкновенной дроби к десятичной».

    1. Сравнение дробей
    2. Периодические десятичные дроби
    3. Пробный ЕГЭ 2012 от 7 декабря. Вариант 3 (без логарифмов)
    4. Метод Гаусса
    5. Интегрирование по частям
    6. Задача B4: обмен валют в трех различных банках

    Перевод обыкновенной дроби в десятичную

    В данной публикации мы рассмотрим, каким образом обыкновенную (простую) дробь можно перевести в десятичную (конечную и бесконечную). Также разберем решение примеров для лучшего понимания изложенного материала.

    • Преобразование обыкновенной дроби в десятичную
    • Способ 1
    • Способ 2

    Преобразование обыкновенной дроби в десятичную

    Чтобы перевести простую дробь в десятичную, можно воспользоваться одним из двух способов ниже:

    Способ 1

    И числитель, и знаменатель умножаем на одно и то же число. При этом число должно быть таким, чтобы знаменатель новой дроби делился нацело на 10, 100, 1000, 10000 и т.д.

    Условие: данный способ подойдет только для таких дробей, знаменатель которых раскладывается на простые множители 2 или 5 (могут повторяться). В результате будет получена конечная десятичная дробь. В остальных случаях для перевода нужно воспользоваться Способом 2, описанным ниже.

    Пример 1:

    в виде десятичной.

    Пример 2:

    Заданную дробь нельзя преобразовать в конечную десятичную дробь, т.к. знаменатель 12 раскладывается на простые множители: 2, 2 и 3. А это противоречит упомянутому выше условию.

    Способ 2

    Этот способ значительно популярнее первого. Алгоритм действий следующий:

    1. Сначала выполняем деление числителя на знаменатель как обычно (в столбик).
    2. Как только мы столкнемся с тем, что остаток от деления больше не делится нацело на делитель, значит:
      • в частном ставим запятую;
      • к остатку добавляем ноль и продолжаем делить полученное число на делитель, записывая результат уже справа от запятой. И так далее, пока мы не получим остаток, равный нулю (для конечных десятичных дробей) или требуемое количество цифр после запятой (для бесконечных дробей).

      ВАЖНО: Смешанную дробь перед превращением в десятичную необходимо представить в виде неправильной.

      Как перевести дробь в десятичную

      Перевести обыкновенную дробь в десятичную можно несколькими способами.

      Первый способ перевода

      Чтобы превратить дробь в десятичную, нужно и числитель и знаменатель умножить на одно и то же число, так чтобы в знаменателе получилось 10, 100, 1000 и т.д.

      Запомните!

      Прежде чем приниматься за работу, не забудьте проверить, можно ли вообще превратить данную дробь в десятичную (см. предыдущую страницу).

      Убеждаемся, что дробь можно привести в конечную десятичную.

      Умножаем числитель и знаменатель на 5 . В знаменателе получим 100 .

      как перевести дробь в десятичную

      Второй способ перевода

      Второй способ более сложный, но применяется чаще первого. Для того, чтобы его использовать нужно вспомнить деление уголком.

      Запомните!

      Чтобы перевести обыкновенную дробь в десятичную, нужно числитель разделить на знаменатель.

      Убеждаемся, что дробь можно перевести в конечную десятичную.

      Делим уголком числитель на знаменатель.

      как перевести дробь в десятичную

      Запомните!

      Ниже приведен список дробей со знаменателями, которые чаще других встречаются в заданиях. Вы облегчите себе работу, если их просто выучите.

      Ссылка на основную публикацию