Как из десятичной дроби сделать обыкновенную дробь

Как перевести десятичную дробь в обыкновенную

Вот, казалось бы, перевод десятичной дроби в обычную — элементарная тема, но многие ученики её не понимают! Поэтому сегодня мы подробно рассмотрим сразу несколько алгоритмов, с помощью которых вы разберётесь с любыми дробями буквально за секунду.

Напомню, что существует как минимум две формы записи одной и той же дроби: обыкновенная и десятичная. Десятичные дроби — это всевозможные конструкции вида 0,75; 1,33; и даже −7,41. А вот примеры обыкновенных дробей, которые выражают те же самые числа:

Сейчас разберёмся: как от десятичной записи перейти к обычной? И самое главное: как сделать это максимально быстро?

Основной алгоритм

На самом деле существует как минимум два алгоритма. И мы сейчас рассмотрим оба. Начнём с первого — самого простого и понятного.

Чтобы перевести десятичную дробь в обыкновенную, необходимо выполнить три шага:

    Переписать исходную дробь в виде новой дроби: в числителе останется исходная десятичная дробь, а в знаменателе нужно поставить единицу. При этом знак исходного числа также помещается в числитель. Например:

  • Умножаем числитель и знаменатель полученной дроби на 10 до тех пор, пока в числителе не исчезнет запятая. Напомню: при каждом умножении на 10 запятая сдвигается вправо на один знак. Разумеется, поскольку знаменатель тоже умножается, там вместо числа 1 будут появляться 10, 100 и т.д. Примеры: Алгоритм перехода к обычным дробям
  • Наконец, сокращаем полученную дробь по стандартной схеме: делим числитель и знаменатель на те числа, которым они кратны. Например, в первом примере 0,75=75/100, при этом и 75, и 100 делятся на 25. Поэтому получаем $0,75=\frac<75><100>=\frac<3\cdot 25><4\cdot 25>=\frac<3><4>$ — вот и весь ответ.:)
  • Важное замечание по поводу отрицательных чисел. Если в исходном примере перед десятичной дробью стоит знак «минус», то и на выходе перед обыкновенной дробью тоже должен стоять «минус». Вот ещё несколько примеров:

    Примеры перехода от десятичной записи дробей к обычной

    Особое внимание хотелось бы обратить на последний пример. Как видим, в дроби 0,0025 присутствует много нулей после запятой. Из-за этого приходится аж целых четыре раза умножать числитель и знаменатель на 10. Можно ли как-то упростить алгоритм в этом случае?

    Конечно, можно. И сейчас мы рассмотрим альтернативный алгоритм — он чуть более сложен для восприятия, но после небольшой практики работает намного быстрее стандартного.

    Более быстрый способ

    В данном алгоритме также 3 шага. Чтобы получить обычную дробь из десятичной, нужно выполнить следующее:

    Вот и всё! На первый взгляд, эта схема сложнее предыдущей. Но на самом деле он и проще, и быстрее. Судите сами:

    Как видим, в дроби 0,64 после запятой стоит две цифры — 6 и 4. Поэтому $n=2$. Если убрать запятую и нули слева (в данном случае — всего один ноль), то получим число 64. Переходим ко второму шагу: $<<10>^>=<<10>^<2>>=100$, поэтому в знаменателе стоит именно сто. Ну а затем остаётся лишь сократить числитель и знаменатель.:)

    Ещё один пример:

    Здесь всё чуть сложнее. Во-первых, цифр после запятой уже 3 штуки, т.е. $n=3$, поэтому делить придётся на $<<10>^>=<<10>^<3>>=1000$. Во-вторых, если убрать из десятичной записи запятую, то мы получим вот это: 0,004 → 0004. Вспомним, что нули слева надо убрать, поэтому по факту у нас число 4. Дальше всё просто: делим, сокращаем и получаем ответ.

    Наконец, последний пример:

    Особенность этой дроби — наличие целой части. Поэтому на выходе у нас получается неправильная дробь 47/25. Можно, конечно, попытаться разделить 47 на 25 с остатком и таким образом вновь выделить целую часть. Но зачем усложнять себе жизнь, если это можно сделать ещё на этапе преобразований? Что ж, разберёмся.

    Что делать с целой частью

    На самом деле всё очень просто: если мы хотим получить правильную дробь, то необходимо убрать из неё целую часть на время преобразований, а затем, когда получим результат, вновь дописать её справа перед дробной чертой.

    Например, рассмотрим то же самое число: 1,88. Забьём на единицу (целую часть) и посмотрим на дробь 0,88. Она легко преобразуется:

    Затем вспоминаем про «утерянную» единицу и дописываем её спереди:

    Вот и всё! Ответ получился тем же самым, что и после выделения целой части в прошлый раз. Ещё парочка примеров:

    В этом и состоит прелесть математики: каким бы путём вы не пошли, если все вычисления выполнены правильно, ответ всегда будет одним и тем же.:)

    В заключение хотел бы рассмотреть ещё один приём, который многим помогает.

    Преобразования «на слух»

    Давайте задумаемся о том, что вообще такое десятичная дробь. Точнее, как мы её читаем. Например, число 0,64 — мы читаем его как «ноль целых, 64 сотых», правильно? Ну, или просто «64 сотых». Ключевое слово здесь — «сотых», т.е. число 100.

    А что насчёт 0,004? Это же «ноль целых, 4 тысячных» или просто «четыре тысячных». Так или иначе, ключевое слово — «тысячных», т.е. 1000.

    Ну и что в этом такого? А то, что именно эти числа в итоге «всплывают» в знаменателях на втором этапе алгоритма. Т.е. 0,004 — это «четыре тысячных» или «4 разделить на 1000»:

    Попробуйте потренироваться сами — это очень просто. Главное — правильно прочесть исходную дробь. Например, 2,5 — это «2 целых, 5 десятых», поэтому

    А какое-нибудь 1,125 — это «1 целая, 125 тысячных», поэтому

    В последнем примере, конечно, кто-то возразит, мол, не всякому ученику очевидно, что 1000 делится на 125. Но здесь нужно помнить, что 1000 = 10 3 , а 10 = 2 ∙ 5, поэтому

    \[\begin& 1000=10\cdot 10\cdot 10=2\cdot 5\cdot 2\cdot 5\cdot 2\cdot 5= \\& =2\cdot 2\cdot 2\cdot 5\cdot 5\cdot 5=8\cdot 125\end\]

    Таким образом, любая степень десятки раскладывается лишь на множители 2 и 5 — именно эти множители нужно искать и в числителе, чтобы в итоге всё сократилось.

    На этом урок окончен. Переходим к более сложной обратной операции — см. «Переход от обыкновенной дроби к десятичной».

    1. Сравнение дробей
    2. Периодические десятичные дроби
    3. Пробный ЕГЭ 2012 от 7 декабря. Вариант 3 (без логарифмов)
    4. Метод Гаусса
    5. Интегрирование по частям
    6. Задача B4: обмен валют в трех различных банках

    Как из десятичной дроби сделать обыкновенную дробь

    Калькулятор покажет как перевести десятичную дробь в обыкновенную дробь, либо в смешанное число. Введите десятичную дробь и калькулятор напишет подробное решение.

    Перевод десятичных дробей в обыкновенные дроби
    Алгоритм преобразования

    Чтобы преобразовать десятичную дробь в обыкновенную дробь нужно выполнить следующие шаги:

    • 1 Записать в виде дроби с знаменателем 1:
    • 2 Умножать числить и знаменатель на 10 за каждый знак после запятой десятичной дроби. Например для десятичной дроби 0.025 нужно умножить 3 раза на 10, т.к. 3 цифры после запятой. Иначе говоря умножаем на 10 пока числитель не станет целым числом.
    • 3 Упростить(сократить) полученную дробь. Чтобы сократить дробь нужно найти наибольший общий делитель числителя и знаменателя дроби.

    Рассмотрим на примере числа 0.025 как перевести десятичную дробь в обыкновенную.

    Пример Преобразования числа 0.025 в дробь

    .

    Основное свойство дроби

    Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

    Перевести десятичную дробь в обыкновенную

    Как перевести десятичную дробь в обыкновенную

    В числитель записываем саму десятичную дробь, в знаменатель 1. Домножим и числитель и знаменатель на множитель равный 1 с количеством нулей таким же как в исходной десятичной дроби чисел после запятой. При необходимости сократим дробь.

    Разберём пример. Переведём десятичную дробь 0.75 в обыкновенную. Запишем в числителе 0.75 а в знаменателе 1 — 0.75/. Чтобы избавиться от дробной части домножим числитель и знаменатель на 100 — получится 0.75/1 = 75/100. Сократим дробь 75/100 = 3/4

    Ссылка на основную публикацию