Как сделать шестиугольник

Как нарисовать шестиугольник

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 50 человек(а).

Количество просмотров этой статьи: 215 263.

В широком смысле шестиугольник — это многоугольник с шестью углами. У правильного же шестиугольника углы и стороны равны. Нарисовать такой шестиугольник можно при помощи рулетки и транспортира, грубый шестиугольник — при помощи круглого предмета и линейки или еще более грубый шестиугольник — при помощи интуиции и карандаша. Если вы хотите знать, как нарисовать шестиугольник различными способами, просто читайте далее.

Правильный шестиугольник и его свойства

Правильные многоугольники

Тему многоугольников проходят в школьной программе, но не уделяют ей достаточного внимания. А между тем она интересна, и особенно это касается правильного шестиугольника или гексагона — ведь эту форму имеют многие природные объекты. К ним относятся пчелиные соты и многое другое. Эта форма очень хорошо применяется на практике.

  • Определение и построение
  • Свойства простые и интересные
  • Описанная окружность и возможность построения
  • Вписанная окружность
  • Периметр и площадь
  • Занимательные построения
  • От теории к практике
  • Определение и построение

    Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.

    Если вспомнить формулу суммы углов многоугольника

    то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

    Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

    Пошаговая инструкция будет выглядеть так:

    Правильный шестиугольник

    1. чертится прямая линия и на ней ставится точка;
    2. из этой точки строится окружность (она является ее центром);
    3. из мест пересечения окружности с линией строятся еще две таких же, они должны сойтись в центре.
    4. после этого отрезками последовательно соединяются все точки на первой окружности.

    При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

    Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

    Свойства простые и интересные

    Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

    Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

    1. диаметр описанной окружности;
    2. диаметр вписанной окружности;
    3. площадь;
    4. периметр.

    Описанная окружность и возможность построения

    Фигура шестиугольник

    Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

    Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

    После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

    R=а.

    Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

    Ну а площадь этой окружности будет стандартная:

    S=πR²

    Вписанная окружность

    Строенный круги

    Центр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника. Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается. Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

    Высота равностороннего треугольника вычисляется просто:

    h²=а²-(а/2)²= а²3/4, h=а(√3)/2

    А поскольку R=a и r=h, то получается, что

    r=R(√3)/2.

    Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

    Ее площадь будет составлять:

    S=3πa²/4,

    то есть три четверти от описанной.

    Периметр и площадь

    С периметром все ясно, это сумма длин сторон:

    P=6а, или P=6R

    А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

    S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

    S=3R²(√3)/2

    Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

    Занимательные построения

    В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

    Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

    1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
    2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
    3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

    Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

    Как построить правильный шестиугольник

    1. Угол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
    2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
    3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
    4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.

    Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

    d=а(√3)/3

    Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

    r₂=а/2

    Площадь нового шестиугольника можно посчитать так:

    Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

    От теории к практике

    Построение правильного шестиугольного

    Свойства шестиугольника очень активно используются как в природе, так и в различных областях деятельности человека. В первую очередь это касается болтов и гаек — шляпки первых и вторые представляют собой ничто иное, как правильный шестигранник, если не брать в расчет фаски. Размер гаечных ключей соответствует диаметру вписанной окружности — то есть расстоянию между противоположными гранями.

    Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

    Выпускается и бетонная плитка для мощения.

    Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.

    Автор статьи Свечкарёв Владимир Фёдорович

    Правильный шестиугольник как построить без циркуля

    Построение шестигранника может производиться несколькими способами. Удобнее всего использовать стандартный набор чертежных инструментов: циркуль, линейку. Однако, в отсутствие циркуля, фигура этого типа может быть начерчена с помощью рейсшины, угольника заводского изготовления с углами 90/60/30°.

    Набор шестигранников

    Шестигранники применяются для откручивания и закручивания болтов при ремонте и сборке мебели.

    В обоих случаях особенностью построения является элементарное знание основ геометрии. В правильном шестиугольнике длина его стороны всегда равна радиусу окружности, описанной вокруг него, противоположные стороны параллельны, грани сопрягаются под углом 60°.

    Способ вычерчивания шестиугольника циркулем, линейкой

    Чтобы построить шестигранник при наличии циркуля, достаточно вычертить окружность, найти на ее дуге 6 точек, соединив их отрезками. Для этого достаточно настроить циркуль один раз, отложив на нем значение стороны многогранника. Линейка потребуется для строительства вспомогательных, основных линий.

    Метод выглядит следующим образом:

    Первый способ вычерчивания шестиугольника циркулем: 1,2,3,4,5,6 — углы, 0 — центр, D — радиус шестигранника.

    • циркулем вычерчивается окружность — радиус является размером стороны;
    • по линейке проводится радиус — точки пересечения этого отрезка будут углами многоугольника;
    • находятся два угла многоугольника — циркуль переставляется в одну из точек пересечения отрезка (проведенный на предыдущем этапе диаметр), на дуге делаются отметки;
    • находятся оставшиеся два угла — циркуль перемещается в противоположную точку пересечения отрезка с дугой окружности, создаются отметки пересечения на второй стороне окружности.

    Построение правильного шестигранника завершается соединением получившихся углов по линейке. Это самый точный способ, требующий минимального количества чертежного инструмента. При значительном размере сторон (например, крой листового металла, деревянных заготовок) можно использовать шнур с карандашом. Один край шнура крепится к карандашу/маркеру, второй неподвижно фиксируется в центре окружности, затем в точках пересечения диаметра с дугой окружности.

    Построение занимает минимальное количество времени, точность целиком зависит от заточки карандаша, наличия фиксатора на циркуле.

    Как из круга сделать шестиугольник

    Построение шестигранника может производиться несколькими способами. Удобнее всего использовать стандартный набор чертежных инструментов: циркуль, линейку. Однако, в отсутствие циркуля, фигура этого типа может быть начерчена с помощью рейсшины, угольника заводского изготовления с углами 90/60/30°.

    Шестигранники применяются для откручивания и закручивания болтов при ремонте и сборке мебели.

    В обоих случаях особенностью построения является элементарное знание основ геометрии. В правильном шестиугольнике длина его стороны всегда равна радиусу окружности, описанной вокруг него, противоположные стороны параллельны, грани сопрягаются под углом 60°.

    Способ вычерчивания шестиугольника без циркуля

    Построение правильного шестигранника без циркуля требует обязательного наличия рейсшины — специального инструмента в виде линейки, внутри корпуса которой расположен массивный вал с резиновыми элементами, препятствующими проскальзыванию. Он создан для быстрого изготовления параллельных прямых, обеспечивая высокую точность построений. Качество вычерчивания в данном методе полностью зависит от точности угла 60° в угольнике заводского изготовления, градуирования шкалы линейки.

    Способ построения выглядит следующим образом:

    Второй способ вычерчивания шестиугольника циркулем: 1,2,3,4,5,6 — углы, 0 — центр, D — радиус шестигранника.

    • к одной стороне отрезка прикладывается угольник — короткая сторона совмещена с линией, угол 60° примыкает к концу отрезка изнутри, по гипотенузе угольника проводится линия произвольного размера, который корректируется впоследствии по шкале линейки;
    • на листе/заготовке вычерчивается линия — длина ее равна двум размерам стороны многоугольника, края автоматически становятся центрами многогранника;
    • операция повторяется при развороте угольника — угол 60° перемещается к противоположной стороне отрезка, центром вращения является длинный катет угольника;
    • разворот угольника — теперь центром вращения становится короткий катет угольника, вычерчиваются еще две грани;
    • уточнение размеров сторон — на четырех получившихся сторонах многоугольника по линейке откладывается их точный размер;
    • строительство двух оставшихся сторон — они расположены параллельно линии, с которой было начато черчение, проводятся по линейке, затем уточняется их размер;
    • контроль параллельности — шкала рейсшины совмещается с линией, от которой началось построение фигуры, затем инструмент перемещается вверх/вниз для удостоверения параллельности двух противоположных граней между собой, с этим отрезком

    Шестигранник в этом случае вычерчивается дольше, чем в первом способе. Однако так можно построить необходимую фигуру, в отсутствие циркуля, угольником. Технология основана на параллельности противоположных сторон правильного шестиугольника, одинаковых внутренних углах 60°.

    Промышленность выпускает угольники как с острыми углами, удобными для данного метода, так и со скругленными.

    Третий способ вычерчивания шестиугольника циркулем: a — диаметр, b — сторона шестигранника.

    В последнем случае удобнее несколько изменить технологию:

    • после вычерчивания центрального отрезка по нему выравнивается рейсшина;
    • инструмент откатывается вниз на произвольную величину;
    • короткая гипотенуза угольника совмещается с линейкой рейсшины, а не с центральным отрезком;
    • скругленный край инструмента не участвует в построении, линия проводится по цельной части гипотенузы.

    Операция повторяется с противоположной стороны отрезка, после чего рейсшина разворачивается на 180°, опять совмещается с центральной линией, откатывается вверх для построения двух других сторон многогранника.

    Это стандартные способы вычерчивания равностороннего многоугольника с шестью углами, гранями. Они удобны для кроя заготовок любых размеров из разных материалов, в стандартном черчении на ватмане. Обе методики имеют исключительно прикладное значение, так как в профессиональных графических редакторах (AutoCAD, Компас-3D) подобные фигуры создаются автоматически заданием нужных параметров.

    Popular

    Основы черчения

    Строительное

    Машиностроительное

    Построение вписанного в окружность правильного шестиуголь­ника. Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения доста­точно разделить окружность на шесть равных частей и соединить най­денные точки между собой (фиг. 60, а).

    Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°. Для выполнения этого построения принимаем горизонтальный диаметр окружности за биссектрису углов 1 и 4 (фиг. 60, б), строим стороны 1 —6, 4—3, 4—5 и 7—2, после чего прово­дим стороны 5—6 и 3—2.

    Построение вписанного в окружность равностороннего треуголь­ника. Вершины такого треугольника можно построить с помощью циркуля и угольника с углами в 30 и 60° или только одного цир­куля.

    Рассмотрим два способа построения вписанного в окружность рав­ностороннего треугольника.

    Первый способ (фиг. 61,a) основан на том, что все три угла треугольника 7, 2, 3 содержат по 60°, а вертикальная прямая, прове­дённая через точку 7, является одновременно высотой и биссектрисой угла 1. Так как угол 0—1—2 равен 30°, то для нахождения стороны

    1—2 достаточно построить по точке 1 и стороне 0—1 угол в 30°. Для этого устанавливаем рейсшину и угольник так, как это показано на фигуре, проводим линию 1—2, которая будет одной из сторон искомого треугольника. Чтобы построить сторону 2—3, устанавливаем рейсшину в положение, показанное штриховыми линиями, и через точку 2 прово­дим прямую, которая определит третью вершину треугольника.

    Магические шестиугольники — метод сборки 1

    Как из круга сделать шестиугольник?

    фото сумки — с сайта handmadiya.com, все остальные фото, если не оговорено иное — мои
    Я обещала одной из читательниц канала рассказать, как сшивать между собой шестиугольные детали. Таких способов несколько (я знаю четыре способа) и сегодня я хочу рассказать о, наверное самом древнем из них. И заодно покажу как шить вот такую симпатичную сумку.

    Сумка шьется из шестиугольных деталей, собранных в определенной последовательности на плоскости.

    Всего на сумку нужно выкроить и собрать между собой 28 шестиугольников: по 10 на каждую сторону, 8 — на дно и бока. Плюс еще, как можно увидеть, 2 четырехугольника — параллелограмма (если я опять не ошиблась в названии геометрической фигуры) по бокам для придания сумке обьема. А вот как собрать между собой шестиугольники (а также четырехугольники с косыми углами) я сейчас расскажу.

    Как сшить друг с другом шестиугольные детали в пэчворке

    вот это уже мои фото, не судите строго

    Для работы нам потребуются лоскуты ткани и нетканый материал для шаблонов. Мне повезло — у меня есть отрез флизелина фирмы Freidenberg, они выпускают их самых разных артикулов, вот есть и такой, называется растр, с нанесенной на него разметкой-сеткой.

    Такой флизелин бывает с прямой разметкой, квадратами и с косой, треугольниками по 60 градусов. Черный материал под флизелином — это так называемая «бумага для заморозки». тоже очень ценная вещь. И то и другое, насколько я знаю. можно купить в магазинах сети»Швейный мир» или в интернет магазинах.

    Я свои шестиугольники создавала с целью сделать чехол для смартфона. Ну и заодно — сделать фото и наконец показать: как их сшивают между собой. Таким же самым способом сшивали шестиугольники и 300 лет назад, в семьях освоителей Дикого запада, хотя им, конечно, приходилось обходиться без фрейденберговского флизелина.

    Итак, я обвела смартфон по краям и вырезала из флизелина заготовку, размерами больше, чем обведенный смартфон, По размеченным линиям обвела и определила шестиугольные детали — семь целых и одну фрагментарную.

    Следующий этап — простым клеем приклеиваю заготовку из флизелина с разметкой на бумагу для заморозки, Это такая бумага типа пергамента для запекания или плотной кальки (если калька вообще бывает плотной).

    Но на одной стороне у нее — тонкая пленка. Бумагу для заморозки уже наверно давным-давно не используют по прямому назначению, а все больше для рукоделия.

    Шестиугольники нумерую в том порядке, в каком они были расположены изначально и будут лежать на чехле, и вырезаю из заготовки.

    Еще этап — нам нужно обернуть шестиугольники тканью. Кстати, если у вас нет флизелина и бумаги для заморозки — можно обойтись просто ватманом или любой другой плотной бумагой. Но флизелин и бумага для заморозки удобнее и вам сейчас покажу чем именно.

    Все шестиугольники раскладываю на лоскуты ткани. Детали я решила делать из клетчатой ткани разных видов. Накладывать шестиугольную заготовку на ткань нужно таким образом, чтобы по краям оставалось достаточно много ткани (не меньше сантиметра — полутора). Эту ткань мы будем загибать с лицевой стороны на изнаночную.

    У меня ткань без ярко выраженных лица и изнанки, поэтому мне было все равно к какой стороне прикладывать заготовку, Но если вы будете шить изделия из шестиугольников, то знайте что шаблон-заготовка должен лежать на изнаночной стороне лоскута и края ткани должны быть отвернуты с лицевой стороны на изнаночную и на шаблон.

    Далее . На шаблон ставлю на несколько минут горячий утюг. Правильно это называется — заутюжить, или как? В общем, в результате высокой температуры пластиковый слой бумаги для заморозки расплавляется и шаблон хорошо закрепляется на ткани, Но не «намертво» — после того, как детали сшиты между собой, шаблоны потихоньку извлекаются из шестиугольников и их можно еще несколько раз использовать таким же образом.

    Вырезанный из ткани шестиугольник с флизелиновой (или из ватмана) заготовкой-шаблоном в центре я кладу на гладильную доску тканью вниз, шаблоном наверх, Края ткани я заворачиваю на шаблон и фиксирую горячим утюгом. Потом я ниткой с иголкой прокладываю строчку по краю завернутой ткани и еще раз заутюживаю, чтобы деталь стала более плоской.

    Таким же образом я делаю все остальные заготовки — обтягиваю тканью шестиугольники и фиксирую края ткани ручной стежкой. Детали складываю вместе в том порядке, в каком они будут лежать на чехле смартфона. Вот как то так. Теперь все эти шестиугольники надо сшить между собой. Но как?

    Беру два шестиугольника, складываю между собой лицом к лицу и прошиваю мелкими стежками по краям деталей. Нужно захватывать буквально по миллиметру от края. Нитку берите крепкую и или в цвет детали или нейтрального цвета — серого, болотно-зеленого, светло-синего. Такие цвета, как показала практика, незаметны на шве, даже если он вылезет наружу.

    Вот так выглядят две сшитые между собой заготовки с изнаночной стороны. Шва не видно.

    А вот так — с лицей стороны. Я уже заутюжила шов, чтобы заготовки легли плоско. Шва не видно. Маленькая хитрость — когда будете шить — не шейте через край, а только мелкими стежками «вперед иголку» и подтягивайте нитку, то есть она должна быть прочной чтобы не лопнуть в самый ответственный момент.

    Ну вот. осталось вам рассказать, как вшить третью деталь между двумя.

    This website is using a security service to protect itself from online attacks.

    This process is automatic, you will be redirected to the requested URL once the validation process is complete.

    В широком смысле шестиугольник — это многоугольник с шестью углами. У правильного же шестиугольника углы и стороны равны. Нарисовать такой шестиугольник можно при помощи рулетки и транспортира, грубый шестиугольник — при помощи круглого предмета и линейки или еще более грубый шестиугольник — при помощи интуиции и карандаша. Если вы хотите знать, как нарисовать шестиугольник различными способами, просто читайте далее.

    Есть ли поблизости от Вас карандаш? Взгляните-ка на его сечение – оно представляет собой правильный шестиугольник или, как его еще называют, гексагон. Такую форму имеет также сечение гайки, поле гексагональных шахмат, кристаллическая решетка некоторых сложных молекул углерода (к примеру, графит), снежинка, пчелиные соты и другие объекты. Гигантский правильный шестиугольник был недавно обнаружен в атмосфере Сатурна. Не кажется ли странным столь частое использование природой для своих творений конструкций именно этой формы? Давайте рассмотрим эту фигуру поподробнее.

    • Длина его сторон соответствует радиусу описанной окружности. Из всех геометрических фигур это свойство имеет лишь правильный шестиугольник.
    • Углы равны между собой, и величина каждого составляет 120°.
    • Периметр гексагона можно найти по формуле Р=6*R, если известен радиус описанной вокруг него окружности, или Р=4*√(3)*r, если окружность в него вписана. R и r – радиусы описанной и вписанной окружности.
    • Площадь, которую занимает правильный шестиугольник, определяется следующим образом: S=(3*√(3)*R 2 )/2. Если радиус неизвестен, вместо него подставляем длину одной из сторон – как известно, она соответствует длине радиуса описанной окружности.

    Как начертить ровный шестиугольник

    Как из круга сделать шестиугольник?

    • Инструкция
    • Инструкция
    • Инструкция
    • Инструкция
    • Инструкция
    • Инструкция

    Обычный шестиугольник, также называемый идеальным шестиугольником, имеет шесть равных сторон и шесть равных углов. Вы можете нарисовать шестиугольник при помощи рулетки и транспортира, грубый шестиугольник – при помощи круглого предмета и линейки или еще более грубый шестиугольник – при помощи только карандаша и немного интуиции. Если вы хотите знать, как нарисовать шестиугольник различными способами – просто читайте далее.

    Геометрические построения являются одной из главных частей обучения. Они формируют пространственное и логическое мышление, а также разрешают понять примитивные и натуральные геометрические обоснованности. Построения производятся на плоскости при помощи циркуля и линейки. Этими инструментами дозволено возвести крупное число геометрических фигур. При этом многие фигуры, кажущиеся довольно трудными, строятся с использованием простейших правил. Скажем, то, как возвести верный шестиугольник, дозволено описать каждого в нескольких словах.

    Вам понадобится

    • Циркуль, линейка, карандаш, лист бумаги.

    Инструкция

    1. Нарисуйте окружность. Установите некоторое расстояние между ножками циркуля. Это расстояние будет являться радиусом окружности. Выберите радиус таким образом, дабы вычерчивание окружности было довольно комфортным. Окружность должна всецело помещаться на листе бумаги. Слишком огромное либо слишком маленькое расстояние между ножками циркуля может привести к его изменению во время черчения. Оптимальным будет расстояние, при котором угол между ножками циркуля равен 15-30 градусов.

    2. Постройте точки вершин углов верного шестиугольника. Установите ножку циркуля, в которой закреплена игла, в всякую точку окружности. Игла должна проткнуть начерченную линию. Чем вернее будет установлен циркуль, тем вернее будет построение. Проведите дугу окружности так, дабы она пересекла начерченную ранее окружность.

    Переставьте иглу циркуля в точку пересечения только что начерченной дуги с окружностью. Начертите еще одну дугу, пересекающую окружность. Вновь переставьте иглу циркуля в точку пересечения дуги и окружности и вновь начертите дугу. Произведите данное действие еще три раза, перемещаясь в одном направлении по окружности.

    Каждого должно получиться шесть дуг и шесть точек пересечения.

    3. Постройте положительный шестиугольник. Ступенчато объедините все шесть точек пересечения дуг с изначально начерченной окружностью. Соединяйте точки прямыми, вычерчиваемыми при помощи линейки и карандаша. Позже произведенных действий будет получен верный шестиугольник, вписанный в окружность.

    Шестиугольником считается многоугольник, владеющий шестью углами и шестью сторонами. Многоугольники бывают как выпуклыми, так и вогнутыми. У выпуклого шестиугольника все внутренние углы тупые, у вогнутого один либо больше угол является острым. Шестиугольник довольно легко возвести. Это делается в пару шагов.

    Вам понадобится

    • Карандаш, лист бумаги, линейка

    Свойства простые и интересные

    Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

    Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

    Описанная окружность и возможность построения

    Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.
    Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

    После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

    R=а.

    Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

    Зачем уметь строить эту геометрическую фигуру?

    Научиться изображать геометрические тела, в том числе и призмы, необходимо всем будущим художникам.

    С построения этих объектов начинается учебный процесс во всех заведениях. А уже после этого студенты постепенно переходят к изображению розеток, капителей, портрета и фигуры человека.

    Если вы освоите этот объект, то в дальнейшем вам будет проще изображать различные предметы, строящиеся на его основе. В частности, у вас не возникнет трудностей с различными коробками и упаковками, бытовой техникой, зданиями и так далее.

    Рисование геометрических тел также входит и в экзаменационную программу для поступления в художественный вуз. Однако с первого раза построить правильную фигуру с соблюдением пропорции и перспективы получается далеко не у каждого. Поэтому будет лучше, если в процессе подготовки к экзаменам вы потратите на изображение призмы достаточно времени, тогда на самом вступительном испытании будете чувствовать себя уверенно. С каждым разом изображение призмы будет даваться все легче.

    В школе-студии К.Э. Арутюновой «Мастер рисунка» учат работать с геометрическими телами. К каждому ученику применяется индивидуальный подход с учетом его уровня и времени до сдачи вступительного экзамена. Преподаватель подробно разбирает со студентами все работы, обращает внимание на ошибки и помогает их исправить.

    Готовитесь ли вы к поступлению в художественный вуз или просто хотите научиться для себя, без основ вам не обойтись. Независимо от того, в каком стиле вы собираетесь работать позднее, начать изучение все равно необходимо с базовых знаний. Запишитесь на занятия по телефону в Москве или через специальную форму на сайте.

    Определение и построение

    Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.
    Если вспомнить формулу суммы углов многоугольника

    то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

    Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

    Пошаговая инструкция будет выглядеть так:

    При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

    Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

    Ссылка на основную публикацию